
Lecture 16: Centripetal Acceleration, ac = v2/r

Circular motion at constant speed, v leads to ac = v2/r
It may surprise you to learn that when a mass moves around a circle of

radius r at constant speed, v, it is still accelearting because its DIRECTION
is changing. This change in direction leads to a change in velocity because
velocity is a vector! When velocity changes, there is always an acceleration
given by,

~aav =
~vf − ~vi

∆t
(1)

By using similar triangles it is possible to show that (see page 199 of text
and/or go to lecture),
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where ac is the magnitude of the centripetal acceleration. Its direction is
toward the center of the circle. This acceleration must be provided by a
force, which in the case of a mass on a string is provided by the tension in
the string. If this force is removed, the mass goes in a straight line. In the
case of a car going around a corner, the force is produced by the tires on the
road.

Some notes on directions

Note that centripetal acceleration ac is NOT the same as angular accel-
eration α. The angular acceleration leads to a linear acceleration a = αr,
which is TANGENTIAL to the circle. Centripetal acceleration is toward the
CENTER of the cirlce, which is often called the radial direction. The angular
velocity and angular acceleration have a direction which is positive counter-
clockwise, which you can remember by using the right hand rule. Circular
motion counterclockwise in the plane has a direction which is along the pos-
itive z axis.

The gravitational force

It is worth stating again that there are only four fundamental forces.
The strong force and the weak force operate at length scales of order the
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size of a nucleus (1fermi), the electomagnetic force and the gravitational
force dominate at larger length scales than that. We have learned about
forces like friction and the force on a spring. Both of those forces come from
electromagnetic and gravitational forces, if we look closely enough. The
magnitude of the gravitational force between two spherical masses m1 and
m2 is, to a very good approximation, given by,

F =
Gm1m2

r2
(4)

where G = 6.673∗10−11Nm2/kg2 and r is the distance between the centers of
the spheres. The gravitational force is always attractive (there is no antigrav-
ity!). In a famous experiment Cavandish (1798) measured G by studying the
force between two masses as a function of their separation. The gravitational
acceleration of mass m2 due to mass m1 is,

a1 = F/m2 =
Gm1

r2
(5)

If we calculate this value for m1 = mass of earth and r = radius of earth,
then we find g = 9.8m/s2. Note also that Newton’s third law applies here,
so the force on mass m1 due to mass m2 is equal and opposite to the force
on m2 due to m1.

Gravitational potential energy

We have so far said that the change in gravitational potential energy
near the surface of earth is ∆PE = mgh. This is a valid equation when we
consider a small mass near the surface of a large mass. However there is a
much more general formula, given by,

PE = −

Gm1m2

r
(6)

The potential energy gets smaller (more negative) as two masses get closer
together. When two masses are a large distance apart, the potential energy
goes to zero. This must reduce to mgh near the surface of a large spherical
mass and it is shown in the textbook, page 212 that it does.

Motion in a gravitational field
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Now that we know the gravitational force and the gravitational potential,
we can apply Newton’s second law or the work-energy theory to solve a lot
of problems.

Circular Orbits

Consider motion of a planet (e.g. earth) around the sun. Take the mass
of the planet to be m and the mass of the sun to be M . If the planet is at a
distance r from the sun, then the force on the planet due to the sun is the
gravitational force. Furthermore, we can consider that the sun is stationary,
as its mass is so large compared to that of the planet that its motion is
scarcely altered due to the force of the planet on the sun. Now lets apply
Newton’s second law,

GMm

r2
= ma (7)

What acceleration is this?? If the planet is moving at constant angular
velocity, ie α = 0, then the only acceleration that the earth experiences is the
centripetal acceleration. We can then find the velocity using the centripetal
acceleration formula,

GMm

r2
= m

v2

r
. (8)

This is a very important relation because it gives a relation between the ra-
dius of the orbit and the speed at which a planet moves. As we shall see
later, it also demonstrated Kepler’s laws, which were known experimentally
at the time.

Escape velocity

How fast do we need to fire a projectile (mass m), from the earth surface
Re = 6, 400km, Me = 6 ∗ 1024kg. in order for it to escape the earth’s
gravitational field? We can solve this using the work energy theory, ∆PE +
∆KE = 0. The projectile is finally at rest, so KEf = 0. Once the projectile
has “escaped” it potential energy is PEf = 0, we then have,

−PEi + KEi = 0 (9)

Using the gravitational potential energy equation, we find that,

GMem

Re
=

1

2
mv2

esc (10)
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Note that this assumes that there is no viscous drag on the projectile, which
in this case is a very poor approximation. However we could do a similar
calculation for MARS and it would be OK. Anyway assuming there is no
drag, we get,

vesc = (
2GMe

Re

)1/2 = 25, 000mph (11)

This is a lower limit on the velocity required. We can also estimate the
amount of energy which this requires, ie 0.5mv2. If you do the calculation it
is clear that it is a large number. For this reason high energy density rocket
fuel is used.
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