Lecture 17: Rotational motion, Kepler’s Laws

Some history

Study of the motion of the planets has a special place in history, due
to its impact on science and as an example of conflicts that can arise be-
tween science and religion. Astronomy has been important since the dawn
of civilization and quantitative, scientific studies of the motion of the planets
occured in many early civilizations, for example in the Chinese, Arabian and
Incan cultures. Ptolemy (85-160AD) put forward an earth centered (geo-
centric) model of the motion of the planets. As measurements of planetary
motion became more precise, it was clear that Ptolemy’s model was wrong.
The Polish astronomer Copernicus (1473-1543) put forward a theory based
on the idea that planets moved around the sun in circular orbits(heliocentric
theory). The Catholic Church had adopted the Ptolemy model as an article
of faith as had most other religions and scientists of the time, so Copernicus
was considered a heretic. Tico Bahe made meticulus measurements which
supported the heliocentric model of Copernicus which was greatly elaborated
upon and supported by Galileo, using his new telescope. Galileo was brought
before the Italian inquisition for his belief in the heliocentric model. Kepler
showed that circular orbits do not explain the observations and instead pro-
posed his famous three laws, which are now known to be accurate.

Kepler was Lutheran and German and also suffered considerably because
of his belief in the heliocentric theory. The study of the motion of the plan-
ets provides a important example of the context within which science works,
with conflicting theories, interpersonal conflicts, sometimes including con-
ficts with religion and with the broader society. Another truth is old theories
never really die and by surfing the internet, you can still find sites vacu-
ously articulating opposition to the heliocentric model and supporting the
view held by the majority of scientists and religious figures of the sixteenth
century. Another amusing topic is the flat earth theory, which was actually
rejected by most intellectuals of the later Greek and Roman civilizations. It
was somewhat popular in the very early middle ages but was not popular at
the time of Columbus, though many people incorrectly believe that it was
religious dogma at the time. Of course evolution is a much more topical
conflict between science and religion in our society.



Kepler’s laws

(i) All planets move in elliptical orbits with the sun as one of the foci.

(ii) A line drawn to the sun from a planet sweeps out equal areas in equal
times.

(iii) T2 o< r®, where T is orbital period and r is the average distance from
the planet to the sun.

Kepler’s laws apply to a small mass (e.g. a planet) moving around a large
mass (e.g. the sun). They apply to moons moving around planets, asteroids
moving around the sun etc. Here we will consider the special case of circular
orbits and demonstrate that if (i) is true, the (ii) and (iii) follow. In later
lectures, we shall return to the case of elliptical orbits. Consider a planet
moving in a circular orbit of radius r with constant speed v as seen from the
sun. If the orbital speed is constant and the motion is circular, then no proof
of (ii) is needed.

Proof of Kepler’s third law follows from Newton’s second law and the
formula for centripetal acceleration,
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We find the relation to the period, T', by using velocity = distance/time, so
that,
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Using this to remove v and cancelling the mass, m, we find that,
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For the case of the sun, the constant K becomes K, = (47%/GM,) =
2.97 x 10792 /m3. Tt is possible to find the mass of the sun by knowing
T and r, both of which can be deduced from observations of planetary mo-
tion. Furthermore, similar methods can be used to deduce the mass of any
planet which has a moon. The period of the moon can be measured and the
radius of the orbit can be measured when the moon is adjacent the planet.

A couple of problems



Problem: Held up in a rotating cannister. Given a static friction coefficient
of us = 0.5, find the angular velocity required to prevent a person slipping
down the side of a cylindrical cannister of radius » = 5m, when the cannister
is vertical.

Solution: The acceleration required to produce circular motion is v?/r.
The associated force is mv?/r. The normal force of the person on the can-
nister is N = mwv?/r, so the friction force is usN = psmv?/r. The force of
gravity on the person is mg, so the rotational speed required to resist the
downward force of gravity through friction is given by,
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so that,
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Which implies that w = v/r = 1.95rad/s = 18.6rev/min. At fixed angular
velocity, the larger the radius the greater the force.

Problem: Where the rubber meets the road.

(i) Cornering depends on centripetal acceleration and on friction. There
are many variants of these problems. First consider using only friction to
corner. What friction force is supplied by the tyres on the road? This is easy
enough,

fo=mv?/r (6)

We might also be asked what value of u, is required, in which case we can
use fs = psmg = mwv?/r, so that,
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Note that this is independent of mass, so that heavy cars and light cars need
the same quality tyres at least when cornering. Other interesting issues to
do with friction are related to braking. For example the coefficient of static
friction between a good dry asphalt road and tyres is about ps = 0.8, while
on a wet road it is a half that or smaller. Also, since the static friction
coefficient is higher than the kinetic friction coefficient, it is better to brake
without skidding.



(ii) A second variant of these problems is to reduce the friction force
required of the tyres by “banking” the turns. For example in NASCAR:
Daytona, where the average qualifying speed is about 200mph the tightest
turn is banked at about 31 degrees. At michigan International speedway,
average speed about 180mph, the tightest turn is banked at about 18 degrees.
Highspeed trains also have banked turns and of course roller coasters have
the ultimate in banked turns, including upside down.

A simple case is to ask: In a spiral roller coaster with radius r = 4m,
which is the minimum angular velocity required to prevent the roller coaster
from falling off the track? At the top of the circle, there is an acceleration
g downward. This acceleration can produce circular motion, or it can cause
the coaster to fall. In order for it to produce circular motion, we need to be
moving fast enough, ie
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The smallest velocity is then, v, = (9.81 x 4)Y/2 = 6.27m/s. At this speed
you would feel weightless at the top of the ride. Most spiral coasters move
at speeds a factor of two or so faster than this.

Back to the racetrack. If we bank a turn, then there is a component of
the normal force which is in the radial direction. If the corner has a banking
angle of #, then the component of the force toward the center of the circle is
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To find the normal force, we assume that friction is absent, in that case
we have, Ncos(f) = mg. [Note that this is different than the case where
we considered a block on an inclined plane where we took the component
of the gravitational force along the direction of the normal force. There is
no contradiction here, as can be demonstrated by carefully carrying out the
calculation with the friction force included.] In the case we are studying here,
we solve for N = mg/cos(f) and plug into Eq. (9) to find,
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This angle is the special angle at which no tyre friction is required during
cornering. It is all supplied by the component of the normal force due to the

4



banked turn. Note that the special banking angle does not depend on the
mass of the car. If a car goes around the corner at a speed which is slower
than that given by this formula, it will tend to slip down the banked corner,
while if a car goes faster it tends to slide up the turn. Friction by car tyres
can handle this additional force provided it is not too large.



