
Lecture 31 - SHM II and waves

The pendulum

Simple harmonic motion of a mass/spring system occurs because of the
relationship between the displacement of the spring and the restoring force,
ie Hooke’s law F = ma = −kx. Any system where the acceleration a is
proportional to the negative of the displacement (−x in this problem) shows
simple harmonic motion. We shall see that the pendulum has this property,
except that we use polar co-ordinates instead of Cartesian co-ordinates.

Consider a mass m at the end of a massless string of length L in a grav-
itational field producing gravitational acceleration g. The string is attached
to a rigid support and the mass oscillates freely without friction. If the mass
is moved through an angle θ from its equilibrium position and released the
mass oscillates and the oscillations obey the laws of simple harmonic motion.
Note that the angle θ is measured from the equilibrium position, which is
vertical. The equation describing the time dependence of the angle is,

θ(t) = θ0Cos(ωt + δ). (1)

The length of the arc from the equilibrium position is related to the angle
through s(t) = Lθ(t), so the equation for the arclength as a function of time
is,

s(t) = Lθ0Cos(ωt + δ) (2)

while the tangential velocity is given by,

v(t) = −v0Sin(ωt + δ) (3)

and the tangential acceleration is given by,

a(t) = −a0Cos(ωt + δ) (4)

To find the equation for the angular frequency, ω (not that this is NOT
the same as the angular velocity in this problem - this is confusing but
important), we need to find the force acting on the mass at arclength s(t)
from the equilibrium position. The relation between force and displacement
for the pendulum is given by,

Ft = −mgSin(θ) ≈ −mgθ = −

mg

L
s(t) = ma (5)
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From this equation we see that the restoring force for pendulum motion is
Ft = −(mg/L)s, which looks just like that for the spring, provided we make
the replacement k → mg/L. In terms of acceleration, we have a = −gs/L =
−ω2s. The frequency of oscillation of the pendulum is then given by,

ω = (
g

L
)1/2; and the period is T = 2π(

L

g
)1/2 (6)

The energy stored in the pendulum is a sum of the kinetic and potential
energies, KE+PE. The kinetic energy is mv2/2 as usual, while the potential
energy is given by,

PE = mgh = mgL(1 − cos(θ)) (7)

The potential energy is a maximum when the pendulum is at the maximum
angle, while the kinetic energy is maximum when the pending moves through
its equilibrium position.

The pendulum formulas can be adapted to extended bodies which may
also undergo SHM, with a frequency given by,

ω = (
mgL

I
)1/2 (8)

Note that the moment of inertia I in this formula is about the pivot point
of the pendulum, ie where it is attached to the rigid support and L is the
distance from the support to the center of mass of the object. It is easy to
show that this reduces to the case of a point mass by using I = mL2 for that
case.

When there is friction or damping, the SHM oscillations are damped and
eventually die out. If the damping is so strong that the oscillations never oc-
cur, the system is called overdamped, while in the other case where damping
is weak the system is called underdamped.

Travelling Waves

Travelling waves are described by a SHM at each point on the wave.
At each point waves still have a frequency or period, which describes their
periodicity in time. However waves also have a wavelength which determines
how often they repeat in space. We therefore need to introduce two new
quantities to describe a wave, the wave velocity, v, and the wavelength λ.
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To find the relation between T , λ and v, choose a point on the travelling
wave, say a creast at a given time. During a period after this time, the crest
decreases and then returns to its peak value. During this period a wavelength
of the wave passes beneath our reference point. The velocity of the wave is
then,

v =
λ

T
= fλ (9)

This is the most important equation in wave motion. Note that there are
several ways quantities related to the wavelength and containing the same
physics, for example the wavenumber is k = 2π/λ is often used instead of
the wavelength.

There are two broad classes of waves, transverse waves and longitudinal
waves. The most familiar wave is the transverse wave, such as waves on a
string and waves at the surface of liquids such as water. They are called
transverse waves because the displacements are perpendicular or transverse
to the direction of wave motion. The height of a transverse travelling wave
is given by,

y(x, t) = ACos(x − vt) = ACos(kx − wt) (10)

This is very general. For each situation where a wave occurs, the frequency,
wavelength and velocity are related to the properties of the material, as we
shall see. Radio waves, light and other EM radiation are also transverse
waves. An alternative type of wave is a longitudinal wave. The most notable
example of this type of wave is a sound wave. Sound waves are really oscil-
lations in the pressure inside the material. Sound waves can occur in gases,
liquids and in solids and in each case the sound velocity is different as we
shall see in Chapter 14.

As an example of a transverse wave, consider the waves on a string, like
a guitar or a rope. The wavespeed v is given by,

v = (
F

µ
)1/2 (11)

where F is the tension is the string or wire and µ = mass/length which is the
mass per unit length of the string. The higher the tension and the lower the
mass per unit length then the higher the wavespeed. For fixed wavelength,
this implies higher frequency sound as we experience for example with a gui-
tar.
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Adding waves: Interference

When two waves meet, they interfere and two cases illustrate what can
happen. If two waves have crests at the same places at the same time, they
add and this is called constructive interference, and the waves are said to
be “in phase”. If two waves have are out of phase, so that one wave has
a maximum just where the other has a minimum, the two waves interfere
destructively. In fact if the two waves have exactly the same amplitude, they
annihilate each other. The property of interference is extremely important
and devices such as x-rays, lens’s, microscopes etc rely on understanding and
controlling wave interference. We shall look at these phenomena in more
detail using sound waves as an example

Reflection of Waves

When a wave hits a wall, it can reflect. If the wall is hard, then the wave
inverts on reflection. If the rope can move at the reflection point, then the
wave is reflected without inversion.
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