Lecture 9: Forces, Statics and Dynamics

Note: Midterm Exam I, Friday 23rd Sept. Covers Chapters 1-4. 20 questions, 12 conceptual and 8 numerical

Working with forces

1. Choose "body" that you want to work with.
2. Draw all forces on this body.

3 . Sum the forces, and apply $\vec{a}=\sum \vec{F} / m$
You need to know that the force of gravity between two masses is given by, $F=\frac{G M m}{r^{2}}$ and that the weight of a mass, m, is a force given by $w=m g$

The friction force is always in a direction opposite to the direction of the net applied force. The largest force that friction can resist before motion starts is the static friction force $F_{s}=\mu_{s} N$, where N is the normal force. Once a body is moving, the friction force is $F_{k}=\mu_{k} N$.

Example 1: Consider an Atwood machine, where $m_{1}=5 \mathrm{~kg}, m_{2}=10 \mathrm{~kg}$. Find: a) the acceleration of $m_{2} ;$ b) the tension in the string.

Solution

a) Choose the whole system as the body. Summing the forces and applying Newton's second law, we have,

$$
\begin{equation*}
a=\frac{\sum \vec{F}}{m}=\frac{m_{2} g-m_{1} g}{m_{1}+m_{2}}=3.27 m / s^{2} \quad(\text { down }) \tag{1}
\end{equation*}
$$

b) Choose m_{2} as the free body. Summing the froces and applying Newton's second law we have,

$$
\begin{equation*}
\sum \vec{F}=m_{2} g-T=m_{2} a \tag{2}
\end{equation*}
$$

Solving for T we find,

$$
\begin{equation*}
T=m_{2}(g-a)=10 \mathrm{~kg}\left(9.81 \mathrm{~m} / \mathrm{s}^{2}-3.27 \mathrm{~m} / \mathrm{s}^{2}\right)=65.4 \mathrm{~N} \tag{3}
\end{equation*}
$$

Note that we could do a calculation like this for mass m_{1} and find the same value for the tension in the string.

Example 2: Consider a block of mass $m_{1}=5 \mathrm{~kg}$ on a table with static friction coefficient $\mu_{s}=0.5$. The block is connected to a second block of mass
m_{2} via a massless string over a frictionless pulley. a) Find the largest mass m_{2} which the mass m_{1} can support without slipping. b) If $m_{1}=m_{2}=5 \mathrm{~kg}$ and the coefficient of kinetic friction is $\mu_{k}=0.25$, find the acceleration of the masses and the tension in the string.

Solution

a) Apply Newton's second law to the whole system, we have,

$$
\begin{equation*}
m_{2} g-\mu_{s} m_{1} g=0 \tag{4}
\end{equation*}
$$

From which we find that $m_{2}=\mu_{s} m_{1}=2.5 \mathrm{~kg}$
b) Once the block is moving, Newton's second law for the whole system states that,

$$
\begin{equation*}
m_{2} g-\mu_{k} m_{1} g=\left(m_{1}+m_{2}\right) a \tag{5}
\end{equation*}
$$

Solving for a, we have,

$$
\begin{equation*}
a=\frac{m_{2} g-\mu_{k} m_{1} g}{m_{1}+m_{2}}=3.68 \mathrm{~m} / \mathrm{s}^{2} \tag{6}
\end{equation*}
$$

To find the tension in the string, apply Newton's second law to either m_{1} or to m_{2}. For m_{1}, we have,

$$
\begin{equation*}
T-\mu_{k} N=m_{1} a \tag{7}
\end{equation*}
$$

so that,

$$
\begin{equation*}
T=\mu_{k} m_{1} g+m_{1} a=30.7 N \tag{8}
\end{equation*}
$$

Example 3: Consider a mass, $m=10 \mathrm{~kg}$, supported by two massless wires attached to a horizontal beam. The first wire makes an angle of 20° to the vertical and the second wire makes an angle of -40^{0} to the vertical. Find the tensions T_{1} and T_{2} in the two wires.

Solution
Summing the forces in the x -direction, we have,

$$
\begin{equation*}
T_{2} \operatorname{Sin}(40)-T_{1} \operatorname{Sin}(20)=0.64 T_{2}-0.34 T_{1}=0 \tag{9}
\end{equation*}
$$

which implies that, $T_{2}=0.53 T_{1}$. Summing the forces in the y-direction, we have,

$$
\begin{equation*}
T_{2} \operatorname{Cos}(40)+T_{1} \operatorname{Cos}(20)-m g=0=0.77\left(0.53 T_{1}\right)+0.94 T_{1}-98.1 N \tag{10}
\end{equation*}
$$

where we used, $T_{2}=0.53 T_{1}$. This implies that $T_{1}=73 N$, and hence that $T_{2}=39$. Note that $T_{1}+T_{2}>m g$, why???

